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A (very) short introduction to linguistics, categorically

Some of the many branches of linguistics:

I Phonetics, phonology, morphology (subword level)
I Syntax, semantics, pragmatics (sentence level)
I Text linguistics, dialogue and discourse analysis
I Psycho-, neuro-, socio-, historical linguistics
I Computational linguistics, natural language processing (NLP)



Syntax from free monoidal categories

Definition
An unrestricted grammar is a tuple G = (V ,X ,R, s) where:
I V and X are finite sets of terminal and non-terminal symbols,
I R ⊆ (V + X )+ × (V + X )? is a finite set of rewrite rules,1

I s ∈ X is the sentence type (or start symbol).

Proposition
A string w1, . . . ,wn ∈ V ? is grammatical in G iff there is an arrow
g : s → w1 ⊗ · · · ⊗ wn in G, the free monoidal category with
generating objects V + X and arrows R .

Theorem (Post, Markov 1947)
Unrestricted grammars (i.e. the word problem for semigroups) are
undecidable.

1+ is disjoint union and × is Cartesian product,
X+ and X ? are the free semigroup and monoid respectively.



Syntax from free monoidal categories: example

V = {Alice, loves,Bob }
X = { s, n, v , v ′ }
R = {s → n ⊗ v ′, v ′ → v ⊗ n,

n→ Alice, v → loves, n→ Bob}

Alice loves Bob
dot dot dot

dot

dot
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n v ′

v n



Syntax from free rigid monoidal categories

Definition
A pregroup grammar is a tuple G = (V ,B,D, s) where V and B
are finite sets with s ∈ B and D ⊆ V × (B × Z)? is a dictionnary.

Definition
A monoidal category C is rigid when every object x has left and
right adjoints x l and x r and four morphisms x ⊗ x l

ε−→ 1
η−→ x l ⊗ x

and x r ⊗ x
ε′−→ 1

η′−→ x ⊗ x r called cups and caps, subject to
(ε′ ⊗ 1x) ◦ (1x ⊗ η′) = 1x = (1x ⊗ ε) ◦ (η ⊗ 1x).

Proposition
A string w1, . . . ,wn ∈ V ? is grammatical in G iff there is a
morphism g : w1 ⊗ · · · ⊗ wn → s in G the free rigid monoidal
category with generating objects V + B and arrows D.

Theorem (Buszkowski, Moroz 2008)
Pregroup grammars are context-free, they are efficiently parsable.



Syntax from free rigid monoidal categories: example

V = {Alice, loves,Bob }
B = { s, n }
D = {Alice→ n, loves→ nr ⊗ s ⊗ nl , Bob→ n }

Alice loves Bob

n n

s

nl nr



Semantics as monoidal functors

Frege’s principle of compositionality: the meaning of a complex
expression is determined by the meanings of its constituent
expressions and the rules used to combine them.
Categorically: the meaning of a grammatical sentence
g : w1 ⊗ · · · ⊗ wn → s is given by its image F (g) under a monoidal
functor F : G→ S for S a monoidal category.

Example
Montague semantics is a closed functor G→ Set for G a categorial
grammar (i.e. a free biclosed category). The meaning of words are
given by lambda terms, the meaning for a sentence is a closed
logical formula.

Example
Distributional Compositional (DisCo) models are rigid functors
G→ Vect for G a pregroup grammar. The meaning of words are
given by tensors, the meaning for a sentence is a scalar.



Pragmatics with language-games

Observation: meaning depends on context. Wittgenstein’s
language-games: “asking, thanking, cursing, greeting, praying”.
The same utterance “Water!” can be a request to a waiter, the
answer to a question or the lyrics of a song.

Example
«The language is meant to serve for communication between a
builder A and an assistant B. A is building with building-stones:
there are blocks, pillars, slabs and beams. B has to pass the stones,
in the order in which A needs them. For this purpose they use a
language consisting of the words “block”, “pillar”, “slab”, “beam”. A
calls them out; — B brings the stone which he has learnt to bring
at such-and-such a call.
Conceive this as a complete primitive language. »
Wittgenstein, Philosophical Investigations (1953)



Pragmatics with language-games, categorically

Language-games as teleological functors G→ OG (J. Hedges and
M. Lewis) for OG the category of open games.

Language-games as rigid functors G→ A(OG) for
A : MonCat→ RigidCat the free rigid completion (joint work
with G. De Felice, E. Di Lavore and M. Roman).



Anaphora resolution and question-answering

Anaphora: the use of an expression whose interpretation depends
upon another expression in context (its antecedent).

Anaphora resolution: given a piece of text, assign each anaphora to
its antecedent. One of the key challenges of NLP.

Question-answering: a game between (Zen) master and student.

Previous work with G. De Felice and K. Meichanetzidis:
given a question and a corpus with its anaphora resolution,
question-answering is NP-complete for relational models.

Example
Donkey sentences: “When a farmer owns a donkey, he beats it.”
“he” 7→ “farmer”, “it” 7→ “donkey”
Q: Who gets beaten? A: The donkey.



Anaphora resolution and question-answering: example



Relational models and conjunctive queries

Theorem (Bonchi, Seeber and Sobocinski (2018))
Conjunctive queries over a relational signature Σ are the arrows of
the free Cartesian bicategory CB(Σ).
Preorder enrichment captures conjunctive query containment.
CB morphisms K : CB(Σ)→ Rel are relational models, i.e. they
define a universe U = K (1) and an interpretation K (R) ⊆ Uar(R)

for each relational symbol R ∈ Σ.

Proposition
For a pregroup grammar G , the rigid functors F : G→ Rel factor
as F = K ◦ L for L : G→ CB(Σ) a rigid functor and
K : CB(Σ)→ Rel a relational model.

Corollary
Semantics, entailment and question-answering are NP-complete.



Relational models and conjunctive queries: example



Anaphora, pebbles and the magical number 7± 2

Q: How can we find a tractable fragment for question-answering?
A: Bounded tree-width!

Theorem (Abramsky, Dawar and Wang (2017))
The tree-width k of a relational model is its coalgebra number for
the pebble game comonad, as well as its number of variables.

Proposition (Miller (1956))
Experimentally, k = 7± 2.
Q: Can we use this to implement LSTM-type neural networks
functorially?
Q: Can we use other game comonads to model computational
resources in language?
Q: Would they qualify as Wittgensteinian language-games?
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